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Abstract

Temporal reasoners for document understand-
ing typically assume that a document’s cre-
ation date is known. Algorithms to ground
relative time expressions and order events of-
ten rely on this timestamp to assist the learner.
Unfortunately, the timestamp is not always
known, particularly on the Web. This pa-
per addresses the task of automatic document
timestamping, presenting two new models that
incorporate rich linguistic features about time.
The first is a discriminative classifier with
new features extracted from the text’s time
expressions (e.g., ‘since 1999’). This model
alone improves on previous generative mod-
els by 77%. The second model learns prob-
abilistic constraints between time expressions
and the unknown document time. Imposing
these learned constraints on the discriminative
model further improves its accuracy. Finally,
we present a new experiment design that facil-
itates easier comparison by future work.

1 Introduction

This paper addresses a relatively new task in
the NLP community: automatic document dating.
Given a document with unknown origins, what char-
acteristics of its text indicate the year in which the
document was written? This paper proposes a learn-
ing approach that builds constraints from a docu-
ment’s use of time expressions, and combines them
with a new discriminative classifier that greatly im-
proves previous work.

The temporal reasoning community has long de-
pended on document timestamps to ground rela-

tive time expressions and events (Mani and Wilson,
2000; Llidó et al., 2001). For instance, consider
the following passage from the TimeBank corpus
(Pustejovsky et al., 2003):

And while there was no profit this year from
discontinued operations, last year they con-
tributed 34 million, before tax.

Reconstructing the timeline of events from this doc-
ument requires extensive temporal knowledge, most
notably, the document’s creation date to ground its
relative expressions (e.g., this year = 2012). Not
only did the latest TempEval competitions (Verha-
gen et al., 2007; Verhagen et al., 2009) include
tasks to link events to the (known) document cre-
ation time, but state-of-the-art event-event ordering
algorithms also rely on these timestamps (Chambers
and Jurafsky, 2008; Yoshikawa et al., 2009). This
knowledge is assumed to be available, but unfortu-
nately this is not often the case, particularly on the
Web.

Document timestamps are growing in importance
to the information retrieval (IR) and management
communities as well. Several IR applications de-
pend on knowledge of when documents were posted,
such as computing document relevance (Li and
Croft, 2003; Dakka et al., 2008) and labeling search
queries with temporal profiles (Diaz and Jones,
2004; Zhang et al., 2009). Dating documents is sim-
ilarly important to processing historical and heritage
collections of text. Some of the early work that moti-
vates this paper arose from the goal of automatically
grounding documents in their historical contexts (de
Jong et al., 2005; Kanhabua and Norvag, 2008; Ku-
mar et al., 2011). This paper builds on their work
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by incorporating more linguistic knowledge and ex-
plicit reasoning into the learner.

The first part of this paper describes a novel learn-
ing approach to document dating, presenting a dis-
criminative model and rich linguistic features that
have not been applied to document dating. Further,
we introduce new features specific to absolute time
expressions. Our model outperforms the generative
models of previous work by 77%.

The second half of this paper describes a novel
learning algorithm that orders time expressions
against the unknown timestamp. For instance, the
phrase the second quarter of 1999 might be labeled
as being before the timestamp. These labels impose
constraints on the possible timestamp and narrow
down its range of valid dates. We combine these
constraints with our discriminative learner and see
another relative improvement in accuracy by 9%.

2 Previous Work

Most work on dating documents has come from the
IR and knowledge management communities inter-
ested in dating documents with unknown origins.
de Jong et al. (2005) was among the first to auto-
matically label documents with dates. They learned
unigram language models (LMs) for specific time
periods and scored articles with log-likelihood ra-
tio scores. Kanhabua and Norvag (2008; 2009) ex-
tended this approach with the same model, but ex-
panded its unigrams with POS tags, collocations,
and tf-idf scores. They also integrated search engine
results as features, but did not see an improvement.
Both works evaluated on the news genre.

Recent work by Kumar et al. (2011) focused on
dating Gutenberg short stories. As above, they
learned unigram LMs, but instead measured the KL-
divergence between a document and a time period’s
LM. Our proposed models differ from this work
by applying rich linguistic features, discriminative
models, and by focusing on how time expressions
improve accuracy. We also study the news genre.

The only work we are aware of within the NLP
community is that of Dalli and Wilks (2006). They
computed probability distributions over different
time periods (e.g., months and years) for each ob-
served token. The work is similar to the above IR
work in its bag of words approach to classification.

They focused on finding words that show periodic
spikes (defined by the word’s standard deviation in
its distribution over time), weighted with inverse
document frequency scores. They evaluated on a
subset of the Gigaword Corpus (Graff, 2002).

The experimental setup in the above work (except
Kumar et al. who focus on fiction) all train on news
articles from a particular time period, and test on ar-
ticles in the same time period. This leads to possi-
ble overlap of training and testing data, particularly
since news is often reprinted across agencies the
same day. In fact, one of the systems in Kanhabua
and Norvag (2008) simply searches for one training
document that best matches a test document, and as-
signs its timestamp. We intentionally deviate from
this experimental design and instead create tempo-
rally disjoint train/test sets (see Section 5).

Finally, we extend this previous work by focusing
on aspects of language not yet addressed for docu-
ment dating: linguistic structure and absolute time
expressions. The majority of articles in our dataset
contain time expressions (e.g., the year 1998), yet
these have not been incorporated into the models de-
spite their obvious connection to the article’s times-
tamp. This paper first describes how to include
time expressions as traditional features, and then
describes a more sophisticated temporal reasoning
component that naturally fits into our classifier.

3 Timestamp Classifiers

Labeling documents with timestamps is similar to
topic classification, but instead of choosing from
topics, we choose the most likely year (or other
granularity) in which it was written. We thus begin
with a bag-of-words approach, reproducing the gen-
erative model used by both de Jong (2005) and Kan-
habua and Norvag (2008; 2009). The subsequent
sections then introduce our novel classifiers and
temporal reasoners to compare against this model.

3.1 Language Models

The model of de Jong et al. (2005) uses the nor-
malized log-likelihood ratio (NLLR) to score doc-
uments. It weights tokens by the ratio of their prob-
ability in a specific year to their probability over the
entire corpus. The model thus requires an LM for
each year and an LM for the entire corpus:
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NLLR(D,Y ) =
∑
w∈D

P (w|D) ∗ log(P (w|Y )

P (w|C)
) (1)

where D is the target document, Y is the time span
(e.g., a year), and C is the distribution of words in
the corpus across all years. A document is labeled
with the year that satisfies argmaxYNLLR(D,Y ).
They adapted this model from earlier work in the
IR community (Kraaij, 2004). We apply Dirichlet-
smoothing to the language models (as in de Jong et
al.), although the exact choice of α did not signifi-
cantly alter the results, most likely due to the large
size of our training corpus. Kanhabua and Norvag
added an entropy factor to the summation, but we
did not see an improvement in our experiments.

The unigrams w are lowercased tokens. We will
refer to this de Jong et al. model as the Unigram
NLLR. Follow-up work by Kanhabua and Norvag
(2008) applied two filtering techniques to the uni-
grams in the model:

1. Word Classes: include only nouns, verbs, and
adjectives as labeled by a POS tagger

2. IDF Filter: include only the top-ranked terms
by tf-idf score

We also tested with these filters, choosing a cut-
off for the top-ranked terms that optimized perfor-
mance on our development data. We also stemmed
the words as Kanhabua and Norvag suggest. This
model is the Filtered NLLR.

Kanhabua and Norvag also explored what they
termed collocation features, but lacking details on
how collocations were included (or learned), we
could not reproduce this for comparison. How-
ever, we instead propose using NER labels to ex-
tract what may have counted as collocations in their
data. Named entities are important to document dat-
ing due to the nature of people and places coming in
and out of the news at precise moments in time. We
compare the NER features against the Unigram and
Filtered NLLR models in our final experiments.

3.2 Discriminative Models
In addition to reproducing the models from previous
work, we also trained a new discriminative version
with the same features. We used a MaxEnt model
and evaluated with the same filtering methods based

on POS tags and tf-idf scores. The model performed
best on the development data without any filtering
or stemming. The final results (Section 6) only use
the lowercased unigrams. Ultimately, this MaxEnt
model vastly outperforms these NLLR models.

3.3 Models with Time Expressions

The above language modeling and MaxEnt ap-
proaches are token-based classifiers that one could
apply to any topic classification domain. Barring
other knowledge, the learners solely rely on the ob-
served frequencies of unigrams in order to decide
which class is most likely. However, document dat-
ing is not just a simple topic classification applica-
tion, but rather relates to temporal phenomena that
is often explicitly described in the text itself. Lan-
guage contains words and phrases that discuss the
very time periods we aim to recover. These expres-
sions should be better incorporated into the learner.

3.3.1 Motivation
Let the following snippet serve as a text example

with an ambiguous creation time:

Then there’s the fund-raiser at the American
Museum of Natural History, which plans to
welcome about 1,500 guests paying $1,000 to
$5,000. Their tickets will entitle them to a pre-
view of...the new Hayden Planetarium.

Without extremely detailed knowledge about the
American Museum of Natural History, the events
discussed here are difficult to place in time, let alone
when the author reported it. However, time expres-
sions are sometimes included, and the last sentence
in the original text contains a helpful relative clause:

Their tickets will entitle them to a preview
of...the new Hayden Planetarium, which does
not officially open until February 2000.

This one clause is more valuable than the rest of
the document, allowing us to infer that the docu-
ment’s timestamp is before February, 2000. An ed-
ucated guess might surmise the article appeared in
the year prior, 1999, which is the correct year. At
the very least, this clause should eliminate all years
after 2000 from consideration. Previous work on
document dating does not integrate this information
except to include the unigram ‘2000’ in the model.
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This paper discusses two complementary ways to
learn and reason about this information. The first
is to simply add richer time-based features into the
model. The second is to build separate learners that
can assign probabilities to entire ranges of dates,
such as all years following 2000 in the example
above. We begin with the feature-based model.

3.3.2 Time Features
To our knowledge, the following time features

have not been used in a document dating setting.
We use the freely available Stanford Parser and NER
system1 to generate the syntactic interpretation for
these features. We then train a MaxEnt classifier and
compare against previous work.

Typed Dependency: The most basic time feature is
including governors of year mentions and the rela-
tion between them. This covers important contexts
that determine the semantics of the time frame, like
prepositions. For example, consider the following
context for the mention 1997:

Torre, who watched the Kansas City Royals
beat the Yankees, 13-6, on Friday for the first
time since 1997.

The resulting feature is ‘since pobj 1997’.

Typed Dependency POS: Similar to Typed Depen-
dency, this feature uses POS tags of the dependency
relation’s governor. The feature from the previous
example is now ‘PP pobj 1997’. This generalizes
the features to capture time expressions with prepo-
sitions, as noun modifiers, or other constructs.

Verb Tense: An important syntactic feature for tem-
poral positioning is the tense of the verb that domi-
nates the time expression. A past tense verb situates
the phrase in 2003 differently than one in the future.
We traverse the sentence’s parse tree until a gover-
nor with a VB* tag is found, and determine its tense
through hand constructed rules based on the struc-
ture of the parent VP. The verb tense feature takes a
value of past, present, future, or undetermined.

Verb Path: The verb path feature is the dependency
path from the nearest verb to the year expression.
The following snippet will include the feature, ‘ex-
pected prep in pobj 2002’.

1http://nlp.stanford.edu/software

Finance Article from Jan. 2002

Text Snippet Relation to 2002
...started a hedge fund before the
market peaked in 2000.

before

The peak in economic activity was
the 4th quarter of 1999.

before

...might have difficulty in the latter
part of 2002.

simultaneous

Figure 1: Three year mentions and their relation to the
document creation year. Relations can be correctly iden-
tified for training using known document timestamps.

Supervising them is Vice President Hu Jintao,
who appears to be Jiang’s favored successor if
he retires from leadership as expected in 2002.

Named Entities: Although not directly related to
time expressions, we also include n-grams of tokens
that are labeled by an NER system using Person, Or-
ganization, or Location. People and places are often
discussed during specific time periods, particularly
in the news genre. Collecting named entity mentions
will differentiate between an article discussing a bill
and one discussing the US President, Bill Clinton.
We extract NER features as sequences of uninter-
rupted tokens labeled with the same NER tag, ignor-
ing unigrams (since unigrams are already included
in the base model). Using the Verb Path example
above, the bigram feature Hu Jintao is included.

4 Learning Time Constraints

This section departs from the above document clas-
sifiers and instead classifies individual emphyear
mentions. The goal is to automatically learn tem-
poral constraints on the document’s timestamp.

Instead of predicting a single year for a document,
a temporal constraint predicts a range of years. Each
time mention, such as ‘not since 2009’, is a con-
straint representing its relation to the document’s
timestamp. For example, the mentioned year ‘2009’
must occur before the year of document creation.
This section builds a classifier to label time mentions
with their relations (e.g., before, after, or simultane-
ous with the document’s timestamp), enabling these
mentions to constrain the document classifiers de-
scribed above. Figure 1 gives an example of time
mentions and the desired labels we wish to learn.

To better motivate the need for constraints, let
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Figure 2: Distribution over years for a single document
as output by a MaxEnt classifier.

Figure 2 illustrate a typical distribution output by a
document classifier for a training document. Two
of the years appear likely (1999 and 2001), how-
ever, the document contains a time expression that
seems to impose a strict constraint that should elim-
inate 2001 from consideration:

Their tickets will entitle them to a preview
of...the new Hayden Planetarium, which does
not officially open until February 2000.

The clause until February 2000 in a present tense
context may not definitively identify the document’s
timestamp (1999 is a good guess), but as discussed
earlier, it should remove all future years beyond
2000 from consideration. We thus want to impose
a constraint based on this phrase that says, loosely,
‘this document was likely written before 2000’.

The document classifiers described in previous
sections cannot capture such ordering information.
Our new time features in Section 3.3.2 add richer
time information (such as until pobj 2000 and open
prep until pobj 2000), but they compete with many
other features that can mislead the final classifica-
tion. An independent constraint learner may push
the document classifier in the right direction.

4.1 Constraint Types
We learn several types of constraints between each
year mention and the document’s timestamp. Year
mentions are defined as tokens with exactly four
digits, numerically between 1900 and 2100. Let T
be the document timestamp’s year, and M the year
mention. We define three core relations:

1. Before Timestamp: M < T

2. After Timestamp: M > T

3. Same as Timestamp: M == T

We also experiment with 7 fine-grained relations:

1. One year Before Timestamp: M == T − 1

2. Two years Before Timestamp: M == T − 2

3. Three+ years Before Timestamp: M < T − 2

4. One year After Timestamp: M == T + 1

5. Two years After Timestamp: M == T + 2

6. Three+ years After Timestamp: M > T + 2

7. Same Year and Timestamp: M == T

Obviously the more fine-grained a relation, the bet-
ter it can inform a classifier. We experiment with
these two granularities to compare performance.

The learning process is a typical training envi-
ronment where year mentions are treated as labeled
training examples. Labels for year mentions are
automatically computed by comparing the actual
timestamp of the training document (all documents
in Gigaword have dates) with the integer value of
the year token. For example, a document written in
1997 might contain the phrase, “in the year 2000”.
The year token (2000) is thus three+ years after the
timestamp (1997). We use this relation for the year
mention as a labeled training example.

Ultimately, we want to use similar syntactic con-
structs in training so that “in the year 2000” and “in
the year 2003” mutually inform each other. We thus
compute the label for each time expression, and re-
place the integer year with the generic YEAR token
to generalize mentions. The text for this example be-
comes “in the year YEAR” (labeled as three+ years
after). We train a MaxEnt model on each year men-
tion, to be described next. Table 2 gives the overall
counts for the core relations in our training data. The
vast majority of year mentions are references to the
future (e.g. after the timestamp).

4.2 Constraint Learner

The features we use to classify year mentions are
given in Table 1. The same time features in the docu-
ment classifier of Section 3.3.2 are included, as well
as several others specific to this constraint task.

We use a MaxEnt classifier trained on the individ-
ual year mentions. Documents often contain multi-
ple (and different) year mentions; all are included in
training and testing. This classifier labels mentions
with relations, but in order to influence the document
classifier, we need to map the relations to individual
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Time Constraint Features

Typed Dep. Same as Section 3.3.2
Verb Tense Same as Section 3.3.2
Verb Path Same as Section 3.3.2
Decade The decade of the year mention
Bag of Words Unigrams in the year’s sentence
n-gram The 4-gram and 3-gram that end

with the year
n-gram POS The 4-gram and 3-gram of POS tags

that end with the year

Table 1: Features used to classify year expressions.

Constraint Count
After Timestamp 1,203,010
Before Timestamp 168,185
Same as Timestamp 141,201

Table 2: Training size of year mentions (and their relation
to the document timestamp) in Gigaword’s NYT section.

year predictions. Let Td be the set of mentions in
document d. We represent a MaxEnt classifier by
PY (R|t) for a time mention t ∈ Td and possible re-
lations R. We map this distribution over relations to
a distribution over years by defining Pyear(Y |d):

Pyear(y|d) =
1

Z(Td)

∑
t∈Td

PY (rel(val(t)− y)|t) (2)

rel(x) =

 before if x < 0
after if x > 0

simultaneous otherwise
(3)

where val(t) is the integer year of the year mention
andZ(Td) is the partition function. The rel(val(t)−
y) function simply determines if the year mention t
(e.g., 2003) is before, after, or overlaps the year we
are predicting for the document’s unknown times-
tamp y. We use a similar function for the seven fine-
grained relations. Figure 3 visually illustrates how
Pyear(y|d) is constructed from three year mentions.

4.3 Joint Classifier
Finally, given the document classifiers of Section 3
and the constraint classifier just defined in Section 4,
we create a joint model combining the two with the
following linear interpolation:

P (y|d) = λPdoc(y|d) + (1− λ)Pyear(y|d) (4)

where y is a year, and d is the document. λ was set
to 0.35 by maximizing accuracy on the dev set. See
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Figure 4: Development set accuracy and λ values.

Figure 4. This optimal λ = .35 weights the con-
straint classifier higher than the document classifier.

5 Datasets

This paper uses the New York Times section of the
Gigaword Corpus (Graff, 2002) for evaluation. Most
previous work on document dating evaluates on the
news genre, so we maintain the pattern for consis-
tency. Unfortunately, we cannot compare to these
previous experiments because of differing evalua-
tion setups. Dalli and Wilks (2006) is most similar in
their use of Gigaword, but they chose a random set
of documents that cannot be reproduced. We instead
define specific segments of the corpus for evaluation.

The main goal for this experiment setup was to es-
tablish specific training, development, and test sets.
One of the potential difficulties in testing with news
articles is that the same story is often reprinted with
very minimal (or no) changes. Over 10% of the doc-
uments in the New York Times section of the Giga-
word Corpus are exact or approximate duplicates of
another document in the corpus2. A training set for
document dating must not include duplicates from
the test set.

We adopt the intuition behind the experimen-
tal setup used in other NLP domains, like parsing,
where the entire test set is from a contiguous sec-
tion of the corpus (as opposed to randomly selected
examples across the corpus). As the parsing com-
munity trains on sections 2-21 of the Penn Treebank
(Marcus et al., 1993) and tests on section 23, we cre-
ate Gigaword sections by isolating specific months.

2Approximate duplicate is defined as an article whose first
two sentences exactly match the first two of another article.
Only the second matched document is counted as a duplicate.
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Year Distributions for Three Time Expressions

97 98 99 00 01 02 03 04 0596

PY(y | "peaked in 2000")

PY(y | "was the quarter of 1999")

PY(y | "will have difficulty in part of 2003")

Final Distribution  -  Pyear(y|d)

0.2

0.0

0.2

0.0

0.2

0.0

0.2

0.0

Figure 3: Three year mentions in a document and the distributions output by the learner. The document is from 2002.
The dots indicate the before, same, and after relation probabilities. The combination of three constraints results in a
final distribution that gives the years 2001 and 2002 the highest probability. This distribution can help a document
classifier make a more informed final decision.

Training Jan-May and Sep-Dec
Development July
Testing June and August

In other words, the development set includes docu-
ments from July 1995, July 1996, July 1997, etc. We
chose the dev/test sets to be in the middle of the year
so that the training set includes documents on both
temporal sides of the test articles. We include years
1995-2001 and 2004-2006, but skip 2002 and 2003
due to their abnormally small size compared to the
other years.

Finally, we experiment in a balanced data set-
ting, training and testing on the same number
of documents from each year. The test set in-
cludes 11,300 documents in each year (months
June and August) for a total of 113,000 test doc-
uments. The development set includes 7,300
from July of each year. Training includes ap-
proximately 75,000 documents in each year with
some years slightly less than 75,000 due to their
smaller size in the corpus. The total number of
training documents for the 10 evaluated years is
725,468. The full list of documents is online at
www.usna.edu/Users/cs/nchamber/data/timestamp.

6 Experiments and Results

We experiment on the Gigaword corpus as described
in Section 5. Documents are tokenized and parsed
with the Stanford Parser. The year in the times-
tamp is retrieved from the document’s Gigaword ID
which contains the year and day the article was re-

trieved. Year mentions are extracted from docu-
ments by matching all tokens with exactly four digits
whose integer is in the range of 1900 and 2100.

The MaxEnt classifiers are also from the Stanford
toolkit, and both the document and year mention
classifiers use its default settings (quadratic prior).
The λ factor in the joint classifier is optimized on
the development set as described in Section 4.3. We
also found that dev results improved when training
ignores the border months of Jan, Feb, and Dec. The
features described in this paper were selected solely
by studying performance on the development set.
The final reported results come from running on the
test set once at the end of this study.

Table 3 shows the results on the Test set for all
document classifiers. We measure accuracy to com-
pare overall performance since the test set is a bal-
anced set (each year has the same number of test
documents). Unigram NLLR and Filtered NLLR
are the language model implementations of previ-
ous work as described in Section 3.1. MaxEnt Un-
igram is our new discriminative model for this task.
MaxEnt Time is the discriminative model with rich
time features (but not NER) as described in Section
3.3.2 (Time+NER includes NER). Finally, the Joint
model is the combined document and year mention
classifiers as described in Section 4.3. Table 4 shows
the F1 scores of the Joint model by year.

Our new MaxEnt model outperforms previous
work by 55% relative accuracy. Incorporating time
features further improves the relative accuracy by
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Model Overall Accuracy
Random Guess 10.0%
Unigram NLLR 24.1%
Filtered NLLR 29.1%
MaxEnt Unigram 45.1%
MaxEnt Time 48.3%
MaxEnt Time+NER 51.4%
Joint 53.4%

Table 3: Performance as measured by accuracy. The pre-
dicted year must exactly match the actual year.

95 96 97 98 99 00 01 02
P .57 .49 .52 .48 .47 .51 .51 .59
R .54 .56 .62 .44 .48 .48 .46 .57
F1 .55 .52 .57 .46 .48 .49 .48 .58

Table 4: Yearly results for the Joint model. 2005/06 are
omitted due to space, with F1 .56 and .63, respectively.

7%, and adding NER by another 6%. Total relative
improvement in accuracy is thus almost 77% from
the Time+NER model over Filtered NLLR. Further,
the temporal constraint model increases this best
classifier by another 3.9%. All improvements are
statistically significant (p < 0.000001, McNemar’s
test, 2-tailed). Table 6 shows that performance in-
creased most on the documents that contain at least
one year mention (60% of the corpus).

Finally, Table 5 shows the results of the tempo-
ral constraint classifiers on year mentions. Not sur-
prisingly, the fine-grained performance is quite a bit
lower than the core relations. The full Joint results
in Table 3 use the three core relations, but the seven
fine-grained relations give approximately the same
results. Its lower accuracy is mitigated by the finer
granularity (i.e., the majority class basline is lower).

7 Discussion

The main contribution of this paper is the discrimi-
native model (54% improvement) and a new set of

P R F1
Before Timestamp .95 .98 .96
Same as Timestamp .73 .57 .64
After Timestamp .84 .81 .82
Overall Accuracy 92.2%
Fine-Grained Accuracy 70.1%

Table 5: Precision, recall, and F1 for the core relations.
Accuracy for both core and fine-grained.

All With Year Mentions
MaxEnt Unigram 45.1% 46.1%
MaxEnt Time+NER 51.4% 54.3%
Joint 53.4% 57.7%

Table 6: Accuracy on all documents and documents with
at least one year mention (about 60% of the corpus).

features for document dating (14% improvement).
Such a large performance boost makes clear that the
log likelihood and entropy approaches from previ-
ous work are not as effective as discriminative mod-
els on a large training corpus. Further, token-based
features do not capture the implicit references to
time in language. Our richer syntax-based features
only apply to year mentions, but this small textual
phenomena leads to a surprising 13% relative im-
provement in accuracy. Table 6 shows that a signif-
icant chunk of this improvement comes from docu-
ments containing year mentions, as expected.

The year constraint learner also improved perfor-
mance. Although most of its features are in the doc-
ument classifier, by learning constraints it captures a
different picture of time that a traditional document
classifier does not address. Combining this picture
with the document classifier leads to another 3.9%
relative improvement. Although we focused on year
mentions here, there are several avenues for future
study, including explorations of how other types of
time expressions might inform the task. These con-
straints might also have applications to the ordering
tasks of recent TempEval competitions.

Finally, we presented a new evaluation setup for
this task. Previous work depended on having train-
ing documents in the same week and day of the test
documents. We argued that this may not be an ap-
propriate assumption in some domains, and particu-
larly problematic for the news genre. Our proposed
evaluation setup instead separates training and test-
ing data across months. The results show that log-
likelihood ratio scores do not work as well in this
environment. We hope our explicit train/test envi-
ronment encourages future comparison and progress
on document dating.
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